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Abstract --A three-dImensIonal numerical Investigation of steady laminar flow and heat transfer is under- 
taken to determine the developmg as well as fully developed Iemperature fields. Physical interpretation is 
given for the enhancement of the heat transfer coefiicient at the thermal entrance region and the overall 
Increase in heat transfer in helical ducts compared to straight ducts. The variation of peripherally averaged 
Nusselt number is studied for the constant wall temperature boundary condition. Detailed analysis is given 
for the peripheral variation of Nusselt number and the temperature field at different cross-sectional planes. 
The effect of the Prandtl number on the temperature field is also studied. The problem is solved using a 

segregated solution approach which reduces the total computer memory requirements. 

INTRODUCTION 

THE PROBLEM of flow through helical pipes and heat 
transfer is of importance in the fields of turbo-machin- 
ery, different process equipment and heat exchangers. 
The flow in curved ducts and helical pipes has been 
extensively investigated for Newtonian fluids, but the 
analysis does not exist for heat transfer in helical pipes 
of square cross-section and small aspect ratios. The 
solution of flow in helical pipes is complicated due to 
the effect of centrifugal forces which causes a sec- 
ondary flow. 

Using the friction factor measurement, White [I] 
reported that the flow through a helicoidal pipe 
remains laminar at a larger Reynolds number than for 
the same straight pipe. The study by Largaespada et 
al. [2] showed from the friction factor measurements 
that the flow remains laminar until Re z 8000 which 
is much higher than the critical Reynolds number for 
the straight pipe. Hsu and Patankar [3] present the 
average Nusselt number data for different Prandtl 
numbers and Dean numbers for laminar non-New- 
tonian flow in curved tubes. Mori et al. [4] performed 
boundary layer type analysis of the fully developed 
laminar flow in a curved duct of square cross-section 
with uniform wall temperature. Analysis by Kumar 
[5] confirms the existence of dual solutions for a cer- 
tain range of Dean number for fully developed flow 
of power law fluids in helical ducts. Joseph er al. [6] 
studied the laminar flow in helically coiled tubes 
of square cross-section. Cheng and Akiyama [7] 
studied the fully developed flow through curved 
rectangular channels. Numerical studies by Ghia and 
Sokhey [S] also indicate the presence of Dean’s insta- 
bility but at a Dean number of 143. Other numerical 
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studies on the asymptotic flow through curved ducts 
show that the secondary flow breakdown takes place 
around a Dean number of 125, and the four-vortex 
structure exists even at a Dean number as high as 900. 

A three-dimensional straight duct flow with a 
square cross-section is modeled to confirm the accu- 
racy of the numerical procedure. The flow and heat 
transfer is analysed for a helical pipe of aspect ratio 6 
for a constant wall temperature boundary condition. 
The Navier-Stokes equations were solved using the 
program FIDAP (91 which utilizes the Galerkin finite 
element method. The local heat transfer coefficient 
results show agreement with that of Chandrupatla 
and Sashi [lo]. The local variation of Nusselt number 
along the length and along the perimeter is analysed. 
The flow through the helical pipe is analysed for a 
Dean number range of 20-1300 for a helicoidal duct 
of aspect ratio (R/u) 13 and pitch 1.680. The appear- 
ance and disappearance of additional counter rotating 
vortices are discussed in this section. This gives the 
design parameters at the entrance length for a square 
helical pipe of this aspect ratio and pitch. The effect 
of pitch on the local variation of Nusselt number along 
the periphery is also discussed here. In subsequent 
sections flow and heat transfer in a helical duct of 
aspect ratio R/a = 3 and pitch 1.680 is modeled. The 
Row and heat transfer is analysed for Reynolds num- 
ber of 500 and 750 and for Prandtl numbers 0.7, 3.0 
and 7.01. The axial velocity profiles were compared 
for the same axial length for the straight duct, and the 
three helical ducts. In all the cases the pitch of the 
helix is kept constant at 1.680. For the helical ducts 
of aspect ratio 3 and 6, values were obtained for two 
set of Reynolds number, 500 and 750. For the helical 
duct of aspect ratio 13. the heat transfer characteristics 
are analysed for three sets of Reynolds numbers, 750, 
1250 and 1750. 



2078 R. M. EASON~~~ 

a 

4 
b 

c, 
D 

NOMENCLATURE 

half the width of one edge of the square 
cross-section of duct 
flow cross-sectional area [m’] 
pitch of the helix 
specific heat 
width of one edge of the cross-section of 
the duct, 2a 
hydraulic diameter of the duct. 4.4, P 
u component of the forcing vector, F 
c component of the forcing vector, F 
w component of the forcing vector, F 
forcing vector 
thermal conductivity of fluid 

x axial coordinate for the hydrodynamic 
entrance region 

(x, ,v, z) Cartesian coordinate 
X* thermal entrance length, x/D,, Pe. 

Greek symbols 
X thermal diffusivity 

6, Kronecker delta 
cp, II/ interpolation functions 

!J coefficient of viscosity 
1’ coefficient of kinematic viscosity 

P fuid density. 

L length of the straight duct 
Nu,,~~ peripheral average axially local 

Nusselt number for the thermal 
entrance region for the specified thermal 
boundary condition, based on TO 

NM ,*.LX peripheral average axially local 
Nusselt number for the thermal 
entrance region, based on T,,, 

P wetted perimeter of the duct [m] 

Subscripts 
i,j, k directions of Cartesian coordinate 
h hydraulic 
m mean 
w wall 
Y derivative w.r.t. .Y 

,i partial derivative w.r.t. i. 

P nondimensional pressure 
R centerline radius of curvature of helix 
T temperature 
AT temperature difference 

TIT3 bulk mean temperature 

TO inlet temperature 
r” nondimensional temperature 
U,, VO, W,, inlet x, y and z components of 

velocity, respectively 
u non-dimensional velocity component in 

x-direction 

Superscripts 
* refers to dimensional value 
- intermediate value. 

Nondimensional numbers 
Ar aspect ratio, R/a 
NM Nusselt number, hL/k 
Pr Prandtl number, v/z 
Re Reynolds number, DUiv 
Pe Peclet number, UD/a 
De Dean number, Red%. I’ 

11 

non-dimensional velocity component in 
I/-direction 
non-dimensional velocity component in 
z-direction 

Note : The symbols defined above are subject to 
alteration on occasion. 

ANALYSIS 

Description of the model 
The model developed in this study is a part of a 

square helical duct of small aspect ratio. To obtain 
the design values of the heat transfer coefficient at 
the thermal entrance region. models with three aspect 
ratios were made. The cases analysed were for helical 
ducts of aspect ratio 3, 6 and 13, where aspect ratio is 
the ratio of the diameter of the helix to the width of 
one edge of the duct. Fully developed parabolic vel- 
ocity profiles were given at the inlet for all the cases 
analysed and a constant wall temperature boundary 
condition is imposed along the walls. Figure 1 shows 
the geometry of the model. The pitch described in this 
problem is the distance traveled perpendicular to the 
plane of the helix when it completes one full turn. 
For a curved pipe of high aspect ratio a new non- 

=2a 

FE. 1. Geometry of the helical duct. 
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dimensional parameter can be defined as the Dean 
number which represents the single non-dimensional 
number characterizing flow in curved pipe of small 
pitch and for aspect ratio Ar >> 1. In a helical coil of 
lower aspect ratio this relation alone cannot describe 
the flow. In a helical coil, the effective radius of cur- 
vature R, of each turn is influenced by the coil pitch 
b, and is given by : 

R, = R[i+j&)‘] 

The Nusselt number is defined based on the inlet tem- 
perature as the reference, i.e. : 

Nu,,,,, = F = ,,;““” r,, (2) 
w.m 0 

Critical Reynolds number 
A transition from laminar to turbulent flow is ident- 

ified by a critical Reynolds number Re,,,,. Because of 
the gradual change in the friction factor in a curved 
pipe, it is difficult to identify the critical Reynolds 
number from the friction factor vs Reynolds number 
curve. Experiments by White [1] confirmed that the 
flow in a curved pipe is much more stable than that 
in a straight pipe, so, whereas the critical Reynolds 
number of the latter is typically around 2000, in a 
curved tube of even small curvature it may be lar- 
ger by a factor of two or more. Kakac et a/. [11] 
recommended the use of the below correlation for 
helical pipes : 

Recrit =2100[l+12(~)“‘]; (3) 

which is derived by Srinivasan et ul. [12]. This cor- 
relation is correct in the limiting case of straight tube 
Recrlt = 2100. The cases analysed in this study are in 
the laminar range. 

Governing equations 
The problem consists of flow in a helical duct of 

square cross-section with a heated wall as depicted in 
Fig. 1 where the fluid enters the domain with a fully 
developed parabolic velocity profile. The governing 
equations are the steady three-dimensional Navier 
Stokes equations for incompressible flow with con- 
stant properties, and the energy equation : 

(PU3., = 0% (4) 

P(upu:) = -PTS&,,. (5) 

PC,($+T,) = UC).,. (6) 

Boundary conditions and assumptions 
A fully developed parabolic velocity profile is given 

as the inlet velocity boundary condition in all the 
cases. The integrated value of the velocity at the inlet 
has a non-dimensionalized value of one. A shear stress 
free boundary condition is specified at the exit of the 

duct since the end of the duct is open to the atmo_ 
sphere. The fluid is incompressible. 

No-slip boundary conditions are imposed on all 
of the solid-liquid interfaces. A non-dimensionalized 
temperature of unity is imposed on all four walls of 
the duct starting at a length of 20 from the entrance. 
The effect of gravity is not taken into account. Also, 
the heat generation due to viscous dissipation is neg- 
lected since we are looking at low Reynolds number 
flows. Since the flow properties are taken to be tem- 
perature independent, the buoyancy term in the 
momentum equation is neglected, i.e. the buoyancy 
and any temperature dependence in the momentum 
equation is neglected. This allows us to solve the 
momentum equations to get a velocity field and use 
this velocity held to obtain a solution to the energy 
equation for different Prandtl numbers. 

Non-dimensionalization 
Dimensionless formulation of problems has many 

advantages. Scaling the fundamental variables with 
respect to typical values and constructing dimen- 
sionless parameters provide a measure of relative 
importance of the various terms in the equations and 
identifies the dominant physical phenomena. It facili- 
tates the performance of parametric studies through 
the variation of a single parameter. 

In this model, the velocity and pressure are scaled as 
follows : u = u/w,, v = vi w,, w = WI w,, p = P/p w,. 
All the geometric parameters are non-dimensionalized 
with respect to the duct height D as follows : x = X/D, 
~9 = Y/D, z = Z/D, r = RID, b = B/D. We introduce 
the following non-dimensional numbers : Re = UOD/v, 
Pr = &,/k,. Pe = Re Pr. 

The temperature is scaled with respect to the inlet 
temperature by setting T* = (T- T,)/(T, - To). By 
introducing the above non-dimensional parameters, 
the momentum and energy equations are transformed 
to : 

(a, = 0, (7) 

P(%UJ,,) = -p,,+ -d,UZ .,,’ (8) 

(u,TT) = j& (A-Y) I (9) 

To vary the non-dimensional parameters such as 
the Reynolds number and Prandtl number it is necess- 
ary to vary dimensional quantities such as density 
and velocity. To keep the setting of the characteristic 
numbers consistent and clear, the inlet velocity, vis- 
cosity and conductivity were set to 1. Hence the value 
of density is set equal to the Reynolds number and 
specific heat to the Prandtl number. 

METHOD OF SOLUTION 

The next step in the modeling process is to solve the 
non-linear partial differential equations governing the 
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flow. The equations are solved using the finite element 
code FIDAP [9]. The finite element method (FEM) 
has some very desirable properties, the most impor- 
tant among them being the capacity to handle irregu- 
lar geometries. The finite element procedure begins 
with the division of the continuum region of interest 
into a number of simply shaped regions called 
elements. Since the Eulerian description of fluid 
motion was used in the field equations these elements 
are assumed to be fixed in space. Within each element 
the dependent variables u,. p, T are interpolated by 
functions of compatible order, in terms of values to 
be determined at a set of nodal points. The partial 
differential equation for a three-dimensional steady- 
state problem within each element is replaced by : 

Momentum: [.f’, (q, I/J, 9, u,,p, T) = R,] 

Incompressibility : [J?(cp, ZI,,) = R3] 

Energy : [.f3 (~0~3, u,, T) = R,l 
where u,, p and T are the column vectors of element 
nodal point unknowns. The symbols R,, R2, R, rep- 
resent the residual errors due to the above approxi- 
mation. With the aid of optimization methods these 
residuals are minimized by establishing orthogonality 
between the residual matrix and the interpolation 
matrix. 

In FIDAP [9] there are two solution procedures. 
The first approach solves all conservation equations 
in a simultaneous coupled manner, while the second 
approach solves each equation separately in a sequen- 
tial manner (segregated approach). In this problem a 
segregated approach is utilized to obtain a solution to 
the velocity field since the size of the model restricts 
the use of a fully coupled solver. The temperature held 
IS solved by using a quasi-Newton method. 

Spatial discretization in the finite element method 
involves dividing the physical domain into small 
clcments which could be of any shape such as a brick 
or tetrahedron. The unknown function is assumed to 
have a polynomial variation within the element and is 
expressed in terms of the nodal variables. Depending 
on the type of polynomial variation desired we need 
to place that many nodes in each element. In this 
model. 8 node linear brick elements were sclccted. 
With this spatial discretization and the use of the 
Galerkin finite element formulation, we arrive at a 
system of matrix equations. 

For unusually large two-dimensional problems and 
three-dimensional problems the peripheral storage 
required for the global system matrix can become 
excessive. In this approach the matrix equations aris- 
ing from the FEM discretization of the flow equations 
is solved in a sequential manner for velocity, tem- 
perature and pressure. The most important difference 
between a coupled solver is that it avoids the direct 
formation of a global system matrix. Instead, this 
matrix is decomposed into smaller submatrices each 
governing the nodal unknowns associated with only 
one conservation equation. These smaller submatrices 

are then solved sequentially using conjugate gradient 
type schemes. As the storage required for the indi- 
vidual submatrices is less than that needed to store 
the global system matrix, the storage requirements of 
the segregated approach are substantially less than 
that of the fully coupled approach. The following 
section from ref. [Y] details the structure of the seg- 
regated algorithm. 

The equation : 

K(u)u = F, (10) 

represents the global discretized matrix problem 
resulting from the application of the Galerkin FEM 
to the fluid flow equations. The global vector of 
unknowns L’ will have the composition c’ = (my, T) 
where u is the vector of velocity components, u = 
(u, 13, )+a). In the segregated algorithm equation (IO) 
is never formed directly. It is decomposed into the 
following set of decoupled sub-matrix systems for the 
continuity, the temperature and the momentum equa- 
tions : 

K,,u-C,p = f,, K,r-C,p = f, K,,ir-C,p = f,, 

(11) 

C:n+C;z,+Cfn = 0 KTT= fT. (12) 

In the above equations, the K,, K, and K, matrices 
incorporate the combined effects of advection and 
diffusion. The C,, C, and CI matrices and their trans- 
poses are the pressure gradient and velocity divergence 
operators, respectively. The right hand side fr,. f,. f,, 
and f, vectors represent the combined effects of gradi- 
ent type boundary conditions. 

The above system of matrix equations is not yet 
amenable to a segregated approach as an explicil 
matrix equation for pressure does not appear in these 
equations. Such an equation can be obtained by 
replacing the continuity equation, which implicitly 
governs the level of pressure, with a Poisson type 
pressure matrix equation. This is done by algebraic 
manipulations of the above discretized momentum 
and continuity equations, which forces the satisfaction 
of the discretized continuity equation. The pressure 
projection approach used in this solution procedure 
comprises three main steps. At the beginning of an 
iteration, an approximation to the pressure is obtained 
from the solution of a Poisson type pressure matrix 
using the latest available values of the field variables. 
The various components of the momentum equations 
and any other conservation equations present in the 
flow problem are then solved using the most recent 
field variables. Finally, at the end of the iteration 
the velocity field is mass-adjusted via an irrotational 
projection onto a divergence free sub-space. This last 
step involves the solution of another Poisson type 
matrix equation for a pressure correction vector AP. 

Given an initial solution held (u”, Lo, i~(‘, T”) for 



Heat transfer in square helical ducts 2081 

i = 0, 1, 2,. until convergence proceed as follows : 

(1) Evaluate Poisson matrix equation for pressure : 

[cT(~;‘)*c,+c’~(~,‘)~c,lP,+i 2 

= -cy(it,~‘,*[~-(if.)*u,]-CT(R,~‘)*[f*-(it!)*z,.]. 

(13) 
(2) Relax the pressure : 

P ‘+I = $+(l-Qp’+‘~. 

(3) Evaluate x-momentum equation for u : 

(14) 

(15) 

(4) Evaluate y-momentum equation for c : 

= f:+c,pt+’ + (16) 

(5) Evaluate the z-momentum equation for w : 

[ (&)E,, +K,]*w’+’ 2 

= f;+c,p’+‘+ 2 it,*w,. 
( > 

(17) 
II 

(6) Evaluate the Poisson matrix for AP 

[C:(ii, ‘)*C,+C;(K, ‘)*C, +C;(ii,;‘)*C;]AP 

_ -CT/+ z-C$.J+ Z_Cf,,,“‘2, (18) 

(7) Adjust velocity field : 

Uif 1 = uI+ 1 2 + (it, ‘)*C,AP, (19) 

,J+l = $+l z + (ii; ‘)*C,AP, (20) 

bl”+’ = il.‘+’ ’ + (ii, ‘)*CAP. (21) 

In the above equations the superscripts i, ii 1,2 and 
i+ 1 denote previous, intermediate and latest iteration 
levels, respectively. The superscript * denotes the latest 
available field variable. The if matrices appearing in 
the above equations are convenient approximations 
to their corresponding K matrices. These are used 
both in the construction of the Poisson type matrices, 
and on the either side of the conservation equations 
to affect the relaxation of these equations. The K matr- 
ices are diagonal matrices obtained from the following 
expressions : 

The CLS appearing in equations (14)-( 17) are relax- 
ation factors which assume values between 0 and 1. 
After solving the momentum equations, the velocity 
field is used to obtain the temperature field solution 
using the quasi-Newton algorithm. Our problem 
model has 48 1 nodes in the cross-sectional plane which 
are non-uniformly distributed. The axial distance 
between the elements is progressively increased as we 
go along the length since the gradients in the solution 
variables in that direction decreases with increase in 
axial length. An optimum value for the as in the seg- 
regated approach is arrived by a numerical experiment 
in order to arrive at value which reduces the oscillation 
in the solution variables. We chose the same a for ah 
the components of velocity. Very tight convergence 
criteria are imposed for the symmetric matrix iteration 
in the segregated algorithm, since the solution from 
this is used in the non-symmetric matrix iteration. The 
velocity solutions took approximately 1 h of CPU 
time on a CRAY Y-MP for each run and the solution 
of the energy equation took approximately 160 s of 
CPU time on a CRAY-2. 

RESULTS AND DISCUSSION 

To verify the numerical model, a flow through a 
straight three-dimensional square duct is simulated. 
The heat transfer boundary conditions were imposed 
at a length of 20 from the entrance to ensure that the 
flow is fully developed when it encounters the heated 
walls, i.e. in the region where the temperature bound- 
ary condition exists the hydrodynamic boundaries 
completely fill the duct cross-section and the velocity 
profile is of an invariant form M? = IY(X, y), u = 2) = 0. 

The flow field is solved using the segregated solution 
approach detailed earlier. Convergence is declared 
when the relative change in the solution variables 
between two successive iterations is found to be less 
than 0.001, i.e. ~]u,-u,-li~/~~u,I~ < 0.001, where the 
vector u comprises all the nodal values of a particular 
degree of freedom. The norm 11 - 11 is a root mean 
squared norm summed over all the equations for the 
model. At steady state the discharge at every cross- 
section (QJ must be equal to the inlet discharge (Q). 
or in other words dQ,/dx = 0. This is a good check 
to verify if mass is being conserved. The error in the 
conservation of mass is found to be less than 1%. The 
flow field obtained in this case is used as the initial 
solution to solve the energy equation. This approach 
IS possible since the fluid properties are taken to be 
temperature independent. 

Constant wall temperature boundary condition 
The temperature field for the three Prandtl numbers 

of 0.7. 3.0 and 7.01 is obtained by solving the energy 
equation using the velocity field obtained from the 
solution of the isothermal flow through the square 
duct. These Prandtl numbers were selected since they 
represent the fluids which have properties between 
that of air and water. The solution is obtained for 
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Re= 200 

(a) 

Re= 400 

(b) 

Re= 600 Re = 1250 

CC) Cd) 

FKL 2. Fully developed ax~l velocity contours: Ar = 13. 
L = 9D. 

forced convection by setting Gr = 0 (no free con- 
vection) and solving the energy equation. The 
computer code is tested for a Prandtl number of 
0.7. The local Nusselt number for the hydrodyn- 
amically fully developed and thermally developing 
flow compared well with that of Chandrapatla and 
Shasthri [lo]. The Nusselt number is defined as 
W., = h,D/k = q”D/(k (T,,,, - T,)), where T, is 
the fluid bulk mean temperature defined by T, = 
I/A,u~,~ uTdA,. The solution is repeated for a lower 
mesh density of 15 x 15 and no noticeable change in 
Nusselt number is observed. After gaining confidence 
in the model, results were obtained for Prandtl num- 
bers 3 and 7.01. 

Deceloping,flow in helical ducts 
It is known that the flow through a helical duct is 

characterized by a secondary flow field caused by the 
unbalanced centrifugal forces in the curved duct. Sec- 
ondary flow produces a transport of the fluid over the 
cross-section of the duct, causing the axial velocity 
profile to be slanted toward the outside of the coil. 
The fluid is forced outward, creating higher pressure 
to balance the momentum caused by the secondary 
flow. The secondary flow transports the fluid from the 
inner wall to the outer wall, and the boundary layer 
near the inner wall develops much faster than in a 
straight duct. 

From the axial velocity contours (Fig. 2), it can be 
observed that the axial velocity is influenced by the 
secondary flow. The development of the boundary 
layer near the outer wall is slower compared to the 
boundary layer near the inner wall. Hence the momen- 
tum boundary layer thickness on the outer wall is 

much smaller than that on the inner wall. Thus, when 
you compare the axial velocity profiles with that of a 
straight duct, the velocity contours in a straight duct 
are compressed toward the outer wall in a helically 
coiled duct. 

To understand the development of flow with 
increasing Dean numbers, solutions were obtained for 
Reynolds numbers ranging from 50 to 1750 for a 
helical duct of aspect ratio 13 and pitch 1.680. Figure 
2a d shows the fully developed axial velocity contours 
at a cross-section 9D from the entrance for a Reynolds 
number of 200, 400, 600 and 1250. It can be noticed 
that in Fig. 2a the contours of maximum axial velocity 
arc shifted towards the outer wall. As the Reynolds 
number is increased to 400 the centrifugal force, which 
is proportional to the velocity, increases. This high 
centrifugal force creates a region of high pressure at 
the middle of the outer wall which reduces the axial 
velocity at that region. 

At a higher Reynolds numbers of 600 Fig. 2c indi- 
cates the formation of an additional vortex at the high 
pressure region. The reason for this phenomena is 
that the contour lines of axial velocity are densely 
distributed near the outer wall and the pressure is 
raised due to centrifugal force proportional to Q* act- 
ing in that region, w being the radial velocity. At a 
certain Reynolds number stagnation appear in the 
central part of the outer wall due to the existence of a 
high pressure region where the large centrifugal force 
is acting. This causes the formation of an additional 
vortex. The strength of this additional vortex increases 
from a Reynolds number of 600 to 700. The contour 
lines of axial velocity show that the position of 
maximum axial velocity at which the centrifugal forces 
become maximum, exists on the boundary line 
between the secondary and additional vortices. The 
two high velocity regions at this Reynolds number 
exist at regions between the top and bottom walls 
and the additional vortex. Thus the centrifugal forces 
acting on the axial flow cause the secondary and 
additional vortex flows. The additional vortex flows 
inward along the radial line as the Reynolds number 
increases. This additional vortex disappears when the 
Reynolds number is increased further. Figure 2d 
shows the fully developed axial velocity contour at 
a Reynolds number of 1250, which shows that the 
additional vortex has disappeared. The reason for this 
disappearance could be explained as follows. This 
additional vortices causes a reduction in the axial vel- 
ocity at the central outer region of the duct. The 
reduction in the axial velocity causes a reduction in 
the centrifugal forces acting on the fluid elements on 
the region which in turn causes a reduction in the 
pressure due to centrifugal force. Thus, when the 
Reynolds number increases additional vortices are 
swept away and the secondary flow is restabilized to 
a double vortex configuration. Thus the centrifugal 
force at a certain Reynolds number range affects the 
appearance, disappearance and reappearance of the 
additional vortices. The Reynolds number range 
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within which this happens depends on the aspect ratio 
of the duct, the duct geometry and the inlet velocity 
profile. 

Figure 3 shows the axial velocity contours at three 
cross-sections along the length in the helical duct of 
aspect ratio 3. At the entrance we have an imposed 
fully developed parabolic velocity profile. At 180“ the 
axial velocity profile is still developing and an 
additional vortex can be observed at a region below 
the center line. This may be attributed to the unbal- 
anced secondary force due to the effect of pitch. How- 
ever, this additional vortex disappears as the flow 
becomes fully developed. This can be noticed from 
the axial velocity contours at the 360’ plane. It is 
known that in the case of a curved duct without pitch. 
the two secondary flow vortices formed are symmetric 
to each other. Based on this, the axial velocity is also 
symmetric to a line drawn at the center of the duct. 
But in the case of a helical duct, the symmetric shape 
is distorted due to the effect of pitch. At the fully 
developed section it can be seen (Fig. 3) that the axial 
velocity contours shift slightly toward the top right 
corner. This confirms the results of Kumar et al. [5]. 
A crescent moon like shape is observed for the fully 
developed axial velocity contours. 

Heat transfer in helical ducts 
As the first fluid enters the helical duct the sec- 

ondary flow causes a change in temperature between 
the outer and inner wall. During this interval the ther- 
mal boundary layer merely transmits most of the heat, 
and the temperature in the thermal boundary layer 
does not increase substantially because heat is con- 
vected away from its outer edge. When the heat carried 
by the secondary flow encounters the thermal bound- 
ary layer on the outer wall. the temperature at the 
outer edge of the thermal boundary layer is suddenly 

increased. Here the Nusselt number drops suddenly 
and temperature rises rapidly. This interaction 
between secondary flow and heat transfer accounts 
for the first cycle in the oscillations. 

Near the tube inlet and at a low Dean number the 
development of the temperature held is similar to that 
in a straight duct. The thermal boundary layer is thin 
and its penetration into the secondary flow field is 
insufficient for the effect of the secondary flow to 
be significant. However, the secondary flow velocities 
increase rapidly with increasing axial distance, and the 
thermal boundary layer grows with advancing axial 
distance. The growth of the thermal boundary layer 
is suppressed, and the secondary convection transfers 
most of the heat into the fluid core. This phenomena 
causes a cyclic variation of heat transfer, temperature 
and local Nusselt number along the axial length until 
the temperature field is fully developed. Since the rela- 
tive rate of heat transport by secondary convection, 
compared with axial convection, increases with 
increase in Reynolds and Prandtl number, the inten- 
sity of the cyclic behavior must increase with increas- 
ing Reynolds number and Prandtl number. This can 
be observed in Fig. 4. 

One consequence of the phenomena of cyclically 
varying wall temperature is a cyclically varying local 
Nusselt number based on the difference between the 
wall and bulk temperature. The cyclic variation damps 
out as a fully developed temperature profile is 
approached and the Nusselt number approaches an 
asymptotic value. The oscillation arises because of the 
fact that at the thermal entrance region, even at high 
aspect ratios, the fluid core is not well mixed. As a 
result the convective propagation of a temperature 
change through the core involves definite time delays. 

Figure 4 shows the periphery averaged local Nusselt 
number for aspect ratios of 3, 6 and infinity (x) for 

FIG. 3. Axial velocity contours at three cross-sectiona. ,4r = 3. Re = 500. Pr = 0.7, 4 = 0’. 180 ad 360 
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a Reynolds number of 750. As compared to straight 
ducts, helical ducts are compact and yield higher heat 
transfer coefficients. At the outer wall of the duct the 
higher velocities reduce the thermal resistance con- 
siderably resulting in high heat transfer coefficients. 
The Nusselt number and hence the heat transfer in 
helical ducts increase with increase in aspect ratio. The 
variation becomes lower as the aspect ratio becomes 
smaller. At a Prandtl number of 0.7, the difference 
between the Nusselt numbers for the helical ducts of 
aspect ratios 3 and 6 is not substantial, but it can be 
observed that helical ducts have a higher heat transfer 
rate compared to the straight duct. As the Prandtl 
number is increased to 3.0. the increase in heat transfer- 
with that of a straight duct increases. The heat transfer 
Increases further as the Prandtl number is raised to 
7.01. At a higher Prandtl number the heat carried by 
the secondary flow increases which causes more cyclic 
variation of the wall temperature and Nusselt number. 
A steady decline in the Nusselt number can be observed 
for the case of aspect ratio cx: as expected. Figure 5 
presents the local Nusselt numbers for a Reynolds num- 
ber of 500 for the three aspect ratios 3, 6, 13 and zx. 
Similar trends in the variation of Nusselt number can be 
observed. Figure 6 shows the variation of local Nusselt 
number with Reynolds number for a helical duct of 
aspect ratio 13 and for a Prandtl number of 0.7. 

We now present the variation of local Nusselt num- 
ber along the periphery at four cross-sections to dis- 
cuss the variation of Nusselt number between the 
edges. The results presented are for a Reynolds num- 
ber of SO0 and Prandtl number of 0.7 which form only 
a fraction of the data which could be presented. The 

1 
\ -. -_ , 

I -- ._ -- --------- -- k __ 
- - - 

5 ‘=__ R = 3.0 ;k --& = 0.7 --I pr=;;-+---------_______-_ 

0 2 4 10 12 
Axial 

L&th. LY 

[-I(, 4 I.ocal Nuszelt number at the thermal cntrance repon : 
Re = 750. R CI = 3. 6 and infinity. 

30 I ( III 1 III ( III / “““I 

Re = 500 \ 
25 \ 

\ 
\ 

201 \ EL ‘I l_ 

‘a,\ 
R = 7.01 

\ 
15 ‘n.\ 

- R/a= 
_- = 
-... = 
-----. = 

OO: 2 4 6 12 
AxialLength, L 

FIG. 5. Local Nusselt number at the thermal entrance region : 
RE = 500, R/a = 3, 6, 13 and infinity. 

temperature contour plots and the local Nusselt num- 
ber plots are shown to give a physical interpretation 
of the development of temperature field. For a Prandtl 
number of 0.7 the temperature profiles are similar to 
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00 

(a (d) 
FIG. 7. Temperature contours at four cross-sections: L = 2.35D, 4.71D, 9.420 and I I.OD 

the velocity profiles since the momentum and tem- 
perature profiles develop at the same rate. Figures 
7(a) and 8 show the temperature contours and local 
variation of Nusselt number along the periphery at 
an axial distance of 2.350 from the entrance. The 
temperature contours indicate that the temperature 
field is not fully developed. At this section the vari- 
ation of heat transfer coefficient between the four 
edges is not substantial. Rut the peak values are shifted 
off the center because of the presence of flow in the 
cross-sectional plane. The inner bottom corner area 
has the lowest value of Nusselt number. 

As we go further downstream the variation of Nus- 
sclt number between the four walls increases. Figures 
7(b) and 8 show the local Nusselt number plot at an 
axial length of 4.710 from the entrance. At the outer 
edge, starting from the bottom point. an increase in 
heat transfer coefficient can be noticed until a point 
below the center line. At that point the Nusselt num- 
ber drops sharply because of the presence of an 

additional vortex which reduces the axial velocity at 
that region. The Nusselt number again climbs to reach 
a maximum value at a point between the mid line and 
the top corner. It can also be noticed that the Nusselt 
number at the corner points does not become zero as 
in the case of-a straight square duct. On the top edge 
the Nusselt number again climbs to a peak at a point 
located closer to the outer edge and then drops gradu- 
ally to reach the minimum value at the corner. On the 
inner edge, the variation is similar to that on a square 
duct except for a sudden climb as it approaches the 
center. This is because of the presence of incoming 
secondary Aow from the top and bottom corners. At 
the bottom wall. a steady increase of the Nusselt num- 
ber is observed from the inner corner to the outer 
corner. The peak is seen at a region beyond half dis- 
tance from the corner since the axial velocity is shifted 
towards the outer edge of the helical duct. Similar 
trends are observed at a length of 9.420 and 11D from 
the entrance as can be seen in Figs. 7(c) and (d), and 
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FIG. 8. Variation of Nusselt number along the periphery of the duct: Re = 500, Pr = 0.7, R/a = 3. 

8. It can be observed that there is a relative increase 
in heat transfer at the corners compared to the pre- 
vious plots which indicate that the secondary flow 
is a dominant phenomena as the flow become fully 
developed. 

Figure 9 shows the peripheral Nusselt number at a 
length of 11.70 for the square duct, and helical ducts 
of aspect ratios 3 and 6. For the square duct the 
variation is similar on all the four edges. It can be 
noticed that the Nusselt numbers on the outer, top 
and inner edges are substantially higher than that 
of a square duct which explains the increase in heat 
transfer rates in a helical duct. Also, it can be noticed 
that the difference in heat transfer between the two 
helical ducts is less compared to the difference with a 
straight duct. This indicates that, at very low aspect 

ratios, variation in Ar does not substantially improve 
the heat transfer. 

We have investigated the physical reasons for the 
peripheral variation of Nusselt number in helicoidal 
ducts. The effect of the Prandtl number on tem- 
perature profiles is analysed. The heat convected by 
the secondary flow increases with the increase in 
Prandtl number. The model predicts that the per- 
centage increase in heat transfer, with the increase in 
Prandtl number, decreases as the aspect ratio becomes 
small. The peripheral variation of local Nusselt num- 
ber shows that the heat transfer coefficient on the 
outer wall is substantially higher than that on the 
inner edge, which confirms the known result. It is 
shown in the analysis that the flow field can be pre- 
dicted by analysing the peripheral variation of local 
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FIG. 9. Nusselt number along the periphery at a length of 11.70 from the entrance: Re = SOO, Pr = 0.7, 
L = 11.70. 
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Nusselt number. The comparison of the numerical 
results with the known exact values for the limiting 
case of the straight duct shows excellent agreement. 
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